Грани правильного тетраэдра - равносторонние треугольники.
Их биссектриса является и высотой и медианой.
В сечении образуется равнобедренный треугольник, одна сторона которого равна ребру тетраэдра, две других - высоты грани.
Высота грани h = a*cos 30° = a√3/2 = 5√3/2.
Площадь сечения можно определить или 1) по формуле Герона, или 2) через высоту сечения.
1) Полупериметр p = 6,83013. Площадь S = √(p(p-a)(p-b)(p-c).
Поставив данные, получаем:
S = √( 6,83013*1,830123*2,5*2,5) = √78,125 = 8,83883.
2) Высота сечения из середины ребра на противоположное ребро равна:
h(c) = √(h² - (a/2)²) = √(18,75 - 6,25) = √12,5 ≈ 4,33013.
S = (1/2)*h(c)*a = (1/2)*5*4,330135 = 8,83883.
График линейной функции - прямая. Угловой коэффициент меньше нуля, поэтому функция убывает. Переменная х - аргумент, а переменная у - зависимая от значения аргумента.
Подберём значения аргумента, а затем и зависимой переменной у, а затем построим график линейной функции.
если х=2, то у=-(2-3)=-(-1)=1если х=3, то у=-(3-3)=-(0)=0ответ: см во вложении график.
б) Найти значение x при у=-2.Подставим в линейную функцию значение у и решим полученное уравнение.
-2=-x+3 => x=2+3 => x=5
Проверка: -2=-5+3 => -2=-(5-3) => -2=-2.
ответ: при х=5 значение у=-2.
если один из внешних углов острый, значит угол при вершине тупой. Против большего угла лежит большая сторона => основание > боковой стороны.
Пусть боковая сторона х, а основание y.
2х+y=36
y-х=6
y=6+х
2х+6+х=36
3х=30
х=10(см) боковая сторона
y=10+6=16(см) основание.
(боковые стороны равнобедренного треугольника равны)