Найдите координаты точки, лежащей в плоскости xoy и равноудаленной от точек A(0;1;0), B(-1;0;1), C(0;-1;0). Решаем как частный случай Искомая точка , обозначаем через M , должна находится на плоскости перпендикулярной отрезка AC и проходящую через ее середину ( требование условия MA = MC) , но в данном случае это совпадает с плоскостью xoz ||см. A(0;1;0) и C(0;-1;0)||, т.е. ординат этой точки равно нулю Y(M) =0.Но c другой стороны M ∈(xoy) ⇒ X(M) =0 . * * * M (x ; 0 ;0) * * * MA =MB ⇔ √((x-0)² +(0 -1)²+ (0 -0)²) = √( (x+1)² +(0 -0)²+ (0 -1)²) ⇔ √(x² +1) = √( x²+2x +2) ⇒ x² +1 =x²+2x +2 ⇒ x= -0,5.
ответ: M(-0,5 ; 0; 0 ).
P.S. Общий случай три уравнения с тремя переменными M(x ; y ; z) Между прочем в этом примере точка B(-1;0;1) тоже ∈ (xoz) ⇒ BA =BC.
Из условия вытекает, что отрезок LK равен половине АС, а BL - половине ВС. Отрезок СК как медиана прямоугольного треугольника, равен половине гипотенузы, то есть СК = ВК = 6 см. Отсюда вывод: гипотенуза АВ = 2*6 = 12 см. Пусть BL = х, а LK = у. Катеты треугольника АВС равны: BC = LB = 2x, АС = 2LK = 2y. Тогда по Пифагору АВ² = АС²+ВС², Если заменить у = х - 3, то получим: 12² = (2х)²+(2(х-3))², 144 = 4х²+4х²-12х+36, 8х²-24х-108 = 0 или, сократив на 4: 2х²-6х-27 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-6)^2-4*2*(-27)=36-4*2*(-27)=36-8*(-27)=36-(-8*27)=36-(-216)=36+216=252;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√252-(-6))/(2*2)=(2root252+6)/(2*2)=(√252+6)/4=√252/4+6/4=√252/4+1.5 ≈ 5,468627 см;x₂=(-√252-(-6))/(2*2)=(-√252+6)/(2*2)=(-√252+6)/4=-√252/4+6/4=-√252/4+1.5 ≈ -2,468627 (отрицательный корень не принимаем). Находим у = х - 3 = 5,468627 - 3 = 2,468627 см. Катеты треугольника АВС в 2 раза больше полученных значений: ВС = 2х = 2*5,468627 = 10,93725 см, АС = 2у = 2*2,468627 = 4,937254 см. Отсюда площадь S треугольника АВС равна: S = (1/2)ВС*АС = (1/2)10,93725*4,937254 = 27 см². Б)
Пусть будет трапеция АВСЕ, где ВС и АЕ - основания, причём ВС=1, АЕ=6. Опустим высоты ВН и СМ на основание АЕ. ВНМС - прямоугольник, потому что ВС параллельно НМ и ВН параллельно СМ, а между собой они перпендикулярны. Значит, НМ=ВС=1, значит, АН+МЕ=5, а раз трапеция равнобедренная, значит, прямоугольные треугольники АВН и СМЕ равны, значит, АН=МЕ=2,5. А - острый угол, косинус А равен 5\7 равен АН\АВ, откуда АВ=(7\5)*АН=3,5
Периметр трапеции равен сумме дли всех её сторон, равен 6+1+3,5+3,5=14
Решаем как частный случай
Искомая точка , обозначаем через M , должна находится на плоскости перпендикулярной отрезка AC и проходящую через ее середину ( требование условия MA = MC) , но в данном случае это совпадает с плоскостью xoz ||см. A(0;1;0) и C(0;-1;0)||,
т.е. ординат этой точки равно нулю Y(M) =0.Но c другой стороны M ∈(xoy) ⇒ X(M) =0 . * * * M (x ; 0 ;0) * * *
MA =MB ⇔ √((x-0)² +(0 -1)²+ (0 -0)²) = √( (x+1)² +(0 -0)²+ (0 -1)²) ⇔
√(x² +1) = √( x²+2x +2) ⇒ x² +1 =x²+2x +2 ⇒ x= -0,5.
ответ: M(-0,5 ; 0; 0 ).
P.S.
Общий случай три уравнения с тремя переменными M(x ; y ; z)
Между прочем в этом примере точка B(-1;0;1) тоже ∈ (xoz)
⇒ BA =BC.