Ромб АВСД, АВ=ВС=СД=АД=8, радиус=2*корень3, проводим перпендикуляры в точки касания ОН на АД и ОМ на АВ, ОН в квадрате=АН*НД - (это уравнение получается из отношения сторон подобных треугольников, треугольник АОН подобен треугольнику НОД как прямоугольные по равным острым углам - угол АОН=90-1/углаА=90-30=60, уголНДО)=1/2 углаД=(180-60)/2=60, тогда АН/ОН=ОН/НД или ОН в квадрате=АН*НД), НД=х, АН=8-х, 12=(8-х)*х, х в квадрате-8х+12=0, х=(8+-корень(64-4*12))/2=8+-4/2, х1=2=НД, х2=6=АН, АН=АМ-как касательные проведенные из одной точки=6, треугольник АМН равнобедренный, но уголА=60, а уголАМН=уголАНМ=(180-60)/2=60, треугольник равносторониий, МН=АН=АМ=6
Противоположные вершины четырехугольника являются концами отрезков, которые пересекаются, т.е. диагоналей, поскольку диагональ четырехугольника - это отрезок, соединяющий его противоположные вершины. Через две пересекающиеся прямые всегда можно провести плоскость и только одну, т.е. две пересекающиеся прямые всегда принадлежат некоторой плоскости. Если прямая принадлежит плоскости, значит каждая ее точка принадлежит этой плоскости, следовательно вершины четырехугольника лежат в одной плоскости, поскольку принадлежат пересекающимся прямым, которые содердат диагонали четырехугольника.
-1=1+а,4=3+в, откуда а=-2, в=1, Найдем точку (х;у) х=0-2=-2; у=-6+1= -5.
ответ (-2;-5)