Объяснение:
1 -е задание отправили, как я понял. Его решать не надо.
***
2. ABCD - четырехугольник. CD=8 см. AC - диагональ.
По теореме Пифагора
AD=√17²-8²=√289-64=√225=15 см.
***
3. Высота в равнобедренном треугольнике является его медианой и биссектрисой. Следовательно:
АЕ=СЕ=24/2=12см.
Боковая сторона АВ=ВС=√12²+5²=√144+25=√169=13 см.
***
4. ABCD - трапеция. ВЕ и СF высоты Из ΔАВЕ АЕ=√10²-8² =√100-64=√36=6 см.
АЕ=DF=6 см. AD =ВС+2*АЕ=7+2*6= 19 см.
S трапеции =h(a+b)/2=8(7+19)/2=8*26/2 =104 см ².
***
5. Из ΔACD
√(5x)²-x² = 12;
√25x²-x²=12;
√24x²=12;
2x√6=12;
x=√6 см - сторона АВ=CD
AC=5√6 см.
Площадь ΔАВС=S(ABCD)/2=12*√6/2 = 6√6 см ².
С другой стороны SΔABC=AC*BH/2=6√6 см ².
Откуда BH=2S/AC=12√6: 5√6= 2.4 см.
Объяснение:
Дано ABCD квадрат, МА⊥(АВС), угол между плоскостями ABC и BMC равен 30°.
Найти : угол между прямой MC и плоскостью квадрата.
Решение.
МА-перпендикуляр к плоскости, МВ-наклонная, АВ-проекция. Проекция АВ⊥ВС , т.к АВСD-квадрат, значит МВ⊥ВС по т. о трех перпендикулярах. Тогда угол между плоскостями ABC и BMC будет линейный угол ∠МВА=30°.
Пусть сторона квадрата х.
ΔАВМ -прямоугольный , tg 30°=ПМ/х , АМ==х/√3.
Найдем диагональ квадрата из ΔАDС по т. Пифагора :АС=√(х²+х²)=х√2.
Углом между МС и плоскостью квадрата есть угол между МС и ее проекцией , т.е ∠МСА.
ΔАСМ -прямоугольный , tg ∠МСА=МА/АС , tg ∠МСА=(х/√3):(х√2)=1:√6=√6/6 ⇒∠МСА=arctg(√6/6)