Биссектриса проведённая к основанию равнобедренного тр-ка c боковой сторотой b = 10, является и медианой и высотой h=8.
Найдём основание а по теореме Пифагора:
(0,5а)² = 10² - 8² = 100 - 64 = 36
0,25а² = 36
а² = 144
а = 12(см)
Найдём площадь тр-ка S и полупериметр р
S = 0,5a·h = 0,5·12·8 = 48(см²)
р = (12 + 2·10):2 = 32:2 = 16(см)
Радиус описанной окружности
R = а·b·b/(4S) = 12·10·10/(4·48) = 1200:192 = 6,25(см)
Радиус писанной окружности
r = S/p = 48/16 = 3(см)
ответ: R = 6,25 см, r = 3см
Пусть SABCD - правильная 4-х угольная пирамида.О- точка пересечения диагоналей основания. Тогда SO-высота пирамиды.
Sпов.=Sосн.+Sбок.
Sосн.=а²=6²=36(ед.кв.)
Sбок.=½рl, где р - периметр основания, l-апофема(высота боковой грани).
Росн.=4а= 4·6=24 ед. -поскольку в основании квадрат.
Найдем апофему пирамиды, для этого проведем высоту боковой грани SAB, которая является равнобедренным треугольником. Получим SМ, т.М - середина стороны АВ основания пирамиды, т.к. для треугольника SAB SМ есть высотой, бисектрисой и медианой.
Кроме того по т. о 3-х перпендикулярах ОМ - проекция SМ на основание и ОМ тоже перпендикулярен АВ. Таким образом ОМ - радиус окружности вписаной в основание пирамиды. Для квадрата R=½а=½·6=3.
Из треугольника SОМ(угол О - прямой) по т.Пифагора SМ²=ОМ²+SО², SМ²=3²+4²=9+16=25,
SМ=5.
Sбок.=½·24·5=60(ед.кв.)
Sпов.=60+36=96(ед.кв.)
Попробуем решить треугольник АСО, который типа из соображений симметрии является равнобедренным. Интересует угол АСО. Гляну у себя на абаке, и он подскажет, что сей угол равен 36,87 градусов. Точнее, его косинус равен 0,5 * 24 / 15 = 0,8.
Продолжим СО до пересечения со стороной АВ, и точку пересечения назовём Х. Поскольку медианы точкой пересечения делятся в отношении 2:1 (если не ошибаюсь, или поправь меня), то ХС = СО * 1,5 = 15 * 1,5 = 22,5.
Теперь в треугольнике АСХ мы знаем стороны ХС = 22,5 и АС=24, и косинус угла между ними : 0,8 (угол = 36,87 градусов). Значит нам ничто не мешает найти по теореме косинусов третью сторону, то есть АХ. Решим на абаке, и он говорит, что АХ = 14,7732867.
Но мы же по условию имеем медианы, значит АВ = 2 * АХ = 29,546573.
Теперь, поскольку по условию L параллельна АВ, то старина Фалес по своей теореме подскажет, что L = 2/3 * АВ = 19,6977156.
Что-то такой ход мыслей мне самому не нравится. Слишком длинный путь. Но ответ всё-таки представляется верным.