Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
Задачу можно решить двумя обычным и через sin))) Какой вам лучше, выбирайте сами.
Обозначим параллелограмм, как АВСД
ВН - высота, опущенная на сторону АД
АН = 4 см, НД = 2 см.
АД = АН + НД = 4 + 2 = 6 см.
параллелограмма = АД × ВН
Угол В = 135 - 90 = 45 градусов (т.к. ВН - высота, следовательно, она опущена под углом 90 градусов)
Рассмотрим треугольник АВН. Угол ВНА = 90 градусов, АВН = 45 градусов, следовательно угол ВАН = 180 - 90 - 45 = 45 градусов. Значит треугольник АВН - равнобедренный
Следовательно, ВН=АН=4 см.
S параллелограмма = 6 × 4 = 24
параллелограмма = АВ × АД × sin a
Sin а = 45 градусов = √2 делённое на 2
АВ² = √ВН² + АН² = √4² + 4² = √32
S параллелограмма = √32 × 6 × √2 делённое на 2 = 24