А). не может, так как напротив большего угла лежит больший угол, а больший угол здесь С, значит он тупой, а А острый Б). может, так как угол А здесь лежит напротив большей стороны, а значит тупой
Ну вообще-то по определению фигуры равны , если они совпадают при наложении. Если треугольники равны, то и все их соответствующие элементы при наложении совпадают. Но раз уж от Вас требуют еще какого-то доказательства, то можно и так: Пусть есть тр-ки АВС и А1 В1 С1 равны. Покажем, например, что биссектриса АН = биссектрисе А1 Н1. Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам). Так же и про остальные биссектрисы.
1. ОН - медиана и высота равнобедренного треугольника AOD, ОН - перпендикуляр к плоскости сечения, ОН = 15 см. ΔАОН: ∠АНО = 90°, по теореме Пифагора АН = √(АО² - ОН²) = √(289 - 225) = √64 = 8 см AD = 2АН = 16 см Высота цилиндра равна AD, так как ABCD - квадрат. Н = 16 см R = 17 см Sбок = 2πRH = 2π · 17 · 16 = 544π см²
2. SO = AB√3/2 как высота равностороннего треугольника, 6√3 = АВ√3/2 АВ = 12 Образующая l = SA = AB = 12 Радиус основания R = AB/2 = 6 Sполн = Sбок + Sосн = πRl + πR² = πR(l + R) Sполн = π · 6 · (12 + 6) = 6π · 18 = 108π
Б). может, так как угол А здесь лежит напротив большей стороны, а значит тупой