М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alex06062
alex06062
04.12.2022 04:35 •  Геометрия

Решить, , буду . и так, сразу по делу. треугольник abc и adc лежат в разных плоскостях и имеют общую сторону ac. точка p - середина стороны ad, точка k - середина dc. каково взаимное расположение прямых pk и ab? , 10-ый класс.

👇
Ответ:
наташа608
наташа608
04.12.2022
1.РК и АВ - скрещивающиеся прямые, т.к. Рк лежит в плоскости (АДС) а АВ пересекает эту плоскость в точке А2. т.к КР параллельна АС, как средняя линия треугольника АДС, то угол между РК и АВ равен углу между Са и АВ.  т.е. углу ВАС. 180-80-40=60гр
4,4(80 оценок)
Открыть все ответы
Ответ:
tatuxa223
tatuxa223
04.12.2022
Для этого надо найти длины сторон по координатам вершин:
A(-6;1), B(2;4), C(2;-2) АВ = √(2+6)² + (4-1)²) = √(64 + 9) = √73 =  8.544004.
ВС = √(2-2)² + (-2-4)²) = √(0² + 6²) = √36 = 6.
АС = √(2+6)² + (-2-1)² = √(64 + 9) = √73 =  8.544004.
Так как стороны АВ и АС равны, то доказано, что треугольник равнобедренный.  Высота, опущенная на сторону а, равна:
ha = 2√(p(p-a)(p-b)(p-c)) / a.
       a            b             c                  p                  2p                 S
8.5440037  6   8.5440037  11.544004   23.08800749      24
     ha                 hb              hc
 5.61798           8           5.61798 
4,5(33 оценок)
Ответ:
Беня2018
Беня2018
04.12.2022
Так как EC - биссектриса, то:
\frac{DC}{ED} = \frac{CK}{EK} \ \ \textless \ =\ \textgreater \ \ \frac{CK}{DC}= \frac{EK}{ED}
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
x= \frac{x_1+\lambda *x_2}{1+\lambda} \\y= \frac{y_1+\lambda *y_2}{1+\lambda} \\\lambda= \frac{m}{n}
ищем длины сторон:
для этого используем формулу |AB|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}
|ED|=\sqrt{(3+4)^2+7^2}=\sqrt{98} \\|EK|=\sqrt{(3-8)^2+(2-3)^2}=\sqrt{26} \\|DK|=\sqrt{144+64}=\sqrt{208}
находим координаты точки C:
x_1=8;\ x_2=-4;\ y_1=3;\ y_2=-5 \\\lambda= \frac{CK}{DC} = \frac{EK}{ED} = \frac{\sqrt{26}}{\sqrt{98}}=\sqrt{ \frac{26}{98} }=\sqrt{ \frac{13}{49} } = \frac{\sqrt{13}}{7} \\C( \frac{8+ \frac{\sqrt{13}}{7} *(-4)}{1+ \frac{\sqrt{13}}{7}} ; \frac{3+ \frac{\sqrt{13}}{7}*(-5)}{1+ \frac{\sqrt{13}}{7}} )=C( \frac{8- \frac{4\sqrt{13}}{7} }{ \frac{7+\sqrt{13}}{7} } ; \frac{3- \frac{5\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}} )=
=C( \frac{ \frac{56-4\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}}; \frac{ \frac{21-5\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}})=C( \frac{56-4\sqrt{13}}{7+\sqrt{13}} ; \frac{21-5\sqrt{13}}{7+\sqrt{13}} )
теперь определим вид треугольника для этого используем теорему косинусов:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для DK и косинуса угла E:
DK^2=ED^2+EK^2-2ED*EK*cosE \\cosE= \frac{ED^2+EK^2-DK^2}{2ED*EK} = \frac{98+26-208}{2\sqrt{98*26}}\ \textless \ 0
cosE<0 поэтому угол тупой и треугольник тупоугольный
ответ:
1) C( \frac{56-4\sqrt{13}}{7+\sqrt{13}} ; \frac{21-5\sqrt{13}}{7+\sqrt{13}} )
2) треугольник тупоугольный
4,6(65 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ