дана трапеция ABCD
EM - средняя линия
пересекает диагонали в точках К и N
AC и BD - диагонали
из свойств средней линии трапеции: EM||BC||AD
CM=MD и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку N.
AE=EM и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку K.
Следовательно: AK=CK и DN=BN
можно также доказать через треугольники ABC и DCB - средняя линия трапеции будет средней линией этих треугольников. Средняя линия треугольника делит стороны пополам, значит диагонали пересекаются пополам.
Объяснение:
общий вид уравнения прямой есть y = kx + b. подставляем известные в уравнения:
1) -1 = 1*2 + b => b = -3; y = x - 3;
2) -1 = 2*2 + b => b = -5; y = 2x - 5;
3) -1 = -1*2 + b => b = 1; y = -x + 1;
4) -1 = -2*2 + b => b = 3; y = -2x +3;
5) -1 = -1/2*2 + b => b = 0; y = -1/2*x.
Чтобы изобразить просто подставь в каждое уравнение два значения различных x. Найди y, которым соответствуют каждому x. Отметь на плоскости точки с такими координатам (x,y) и проведи через них прямую. Например для первого уравнения y = x - 3:
подставим x = 3. y = 3 - 3 = 0. первая точка (3;0). подставим x = 4. y = 4 - 3 = 1. вторая точка (4;1).