так как средняя линия равна полусумме оснований то надо найти второе (большее основание), для этого проведем высоту из тупого угла к большему основанию. она отсечет от трапеции прямоугольник, то есть одна из частей разделенного высотой большего основания равна 10. найдем второй кусок большего основания дл я этого рассмотрим прямоугольный треугольник который образовала большая боковая сторона и высота. т.к один из острых углов в прямоугольном треугольнике равен 60 градусам, то 2ой угол равен 90-60=30 градусов. так каак в прямоугольном треугольнике катет лежащий против угла в 30 градусов (а это и есть нужный нам второй кусок большего основания) равен половине гипотенузы, то он равен 8/2=4. тогда большее основание равно сумме двух кусков то есть 10+4=14. средняя линия равна полусумме оснований, то есть (10+14)/2=24/2=12.
ответ:12.
p.s понимаю что на словах ничего не понятно поэтому вложен рисунок.
Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
Значит, Sполн = π · ОВ · (ОВ + SВ) = π · 6 · (6 + 10) = 6π · 16 = 96π (см²).
ответ: 96 см².