Как решать? стороны треугольника относятся как 4: 5: 6, а периметр треугольника ,образованного его средними линиями, равен 30 см. найдите средние линии треугольника.
Допустим большой треугольник это АВС. маленький треугольник, который образован средними линиями это треугольник МNH. Так как есть теорема о том, что средняя линяя параллельна и равна 1/2 этой стороны, то нужно 4, 5 и 6 разделить на два ( так как ты находишь стороны в маленьком треугольнике, т.е. Средние линии) У тебя получится сторона МН - 2 см, МN- 2,5 см, NH- 3 см. Теперь пишешь пусть одна часть равна х, и стороны MH MN и NH равны по 2, 2, 5 и 3 см. Зная, что периметр треугольника 30 см, составим уравнение.
АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения: R=3/cos 18=3/0.95=3.15 (см). Найдем сторону фигуры: a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см) ответ: 1.89 см. 2) Найдем R: R = r/cos 180/n=5/√3/2=10√3/3 (см) Длина стороны равна R, следовательно a=R=10√3/3, значит, P = 6a=10√3/3*6=20√3 (cм) или 34.64 см. ответ: 20√3 см или 34.64 см. 3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см). ответ: 30 см.
У тебя получится сторона МН - 2 см, МN- 2,5 см, NH- 3 см. Теперь пишешь пусть одна часть равна х, и стороны MH MN и NH равны по 2, 2, 5 и 3 см. Зная, что периметр треугольника 30 см, составим уравнение.
2х+ 2,5х+3х = 30
7,5х= 30.
Х= 4
Сторона MH равна 8 см,
MN = 10 см
NH = 12 см