12
Объяснение:
Диагональ прямоугольника образует два равных прямоугольных треугольников является гипотенузой. Угол, который образуется шириной(катетом) и диагональю(гипотенузой) равен 60°. Значит другой острый угол равен 30°. Катет лежащий против угла 30° равен половине гипотенузе. Ширина прямоугольника и является катетом, который лежит против угла 30°.
Катет(ширина)=8√3/2=4√3.
ДЛина прямоугольника будет являться катетом прямоугольного треугольника. Мы можем его найти по теореме Пифагора.
Катет(ширина) обозначим а, гипотенуза(диагональ) обозначим с, катет(длина) обозначим б.
Найдём его по теореме Пифагора:
б^2=с^2-а^2
б^2=(8√3)^2-(4√3)^2=192-48=144
б=√144=12
Длина больше ширины а прямоугольнике. Если корень в квадрате, то корень убирается.
1. Верно ли утверждение: "Четырехугольник является правильным, если все его углы равны между собой"?
б) нет, так как должны быть равны и стороны, иначе это может быть прямоугольник.
2. Все стороны многоугольника являются хордами окружности. Можно ли утверждать, что многоугольник описан около окружности?
б) нет, этот многоугольник вписан в окружность.
3. Чему равна дуга окружности (в градусах), стягиваемая стороной правильного треугольника?
б) 120° (360° : 3) .
4. Сколько сторон имеет правильный многоугольник, у которого сумма всех его углов равна 540°?
Сумма углов многоугольника равна 180°(n - 2), где n - количество сторон.
180°(n - 2) = 540°
n - 2 = 3
n = 5
а) 5.
5. Чему равна длина окружности, если ее диаметр равен 50 см?
С = πd = 50π см
а) 50π см.
6. Из круга, радиус которого равен 20 см, вырезан сектор. Дуга сектора равна 90°. Чему равна площадь оставшейся части круга?
Дуга оставшейся части круга:
α = 360° - 90° = 270°
Sсект = πR² · α / 360°
Sсект = π · 400 · 270° / 360° = 300π см²
а) 300π см²