1) Основание данной призмы - это проекция полученного сечения на плоскость основания.
Отношение площади основания к площади сечения равно косинусу угла между ними. S(ABCDEF)/S(ABC₂D₁E₁F₂)=cosα.
Площадь правильного шестиугольника: S₆=3a²√3/2.
В тр-ке ВСD по т. косинусов BD²=BC²+CD²-2BC·CD·cos120°,
BD²=a²+a²-2a²·(-0.5)=3a².
BD=a√3.
В тр-ке BD₁D BD₁=√(DD₁²+BD²)=√(a²+3a²)=2a.
cosα=BD/BD₁=a√3/2a=√3/2.
S(ABC₂D₁E₁F₂)=S₆/cosα=(3a²√3/2):(√3/2)=3a² - это ответ.
2) в основании правильный треугольник, тогда его высота по Т.Пифагора: СН=кор(4^2-2^2)=кор12=2кор3
рассмотрим треугольник МНС-прямоугольный (угол С=90), угол МНС=45, тогда угол НМС тоже 45, следовательно, трреугольник равнобедренный, тогда НС=МС=2кор3
т.к. СС1=2МС=4 кор3
тогда площадь боковой поверхности
S=Pосн*Н=(4+4+4)*4кор3=48 кор3
корень из 169 = 13 см
расстояние равно от вершины до основания 13см
2) угол dod1 = 45 градусов, . в треугльника dod1 угол d = 90 градусов, => треугольник dod1 = прямоугольный => угол dod1 = углу od1d => od = dd1 = h. od = 1/2 * db = 1/2* корень из( 144 + 256) = 1/2 * 20 = 10. найдем площадь сечения через формулу 1/2 * od1 * ac. ac = 20, od1 = корень из(100+100) = 10√2 => s acd1 = 1/2 * 20 * 10√2 = 100√
3) проекцию катета отметим как х
проекцию гипотинузы как y
решаем:
х=10*cos60град.=5 дм.
ад=√(100-25)=√75
ав=√(100+100)=√200
y=√(200-75)=√125=15 дм.
ответ:
проекция катета равна 5дм;
проекция гипотенузы равна 15дм.