М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
BektasB
BektasB
04.08.2021 22:50 •  Геометрия

Докажите свойство односторонних углов при параллельных прямых

👇
Ответ:
elvira122004
elvira122004
04.08.2021
Ну можешь провести прямую паралллельную секущий у тебя выйдет пар-амм и у него при одной стороне сумма углов должна быть 180¤ Вот собственно и все из этого следует что данное св-во что при пересечении пар-ных прямых секкщей соотв. в сумме дают 180¤
4,6(69 оценок)
Открыть все ответы
Ответ:
katyamora
katyamora
04.08.2021
Построим прямую из угла А к углу С. т.к. угол А прямой (90), то прямая АС делит его пополам, => угол САD = 30 (это 180-(60+90)=30). АD является гипотенузой в треугольнике САD. По правилу - против угла 30 лежит катет равный половине гипотенузы. Катет СD = 7, => АD (гипотенуза) =14 см. Построим из угла ACD прямую, перпендикулярную основанию АD в точке Н и получим прямой угол. Угол С = 30. По тому же свойству о угле в 30 градусов получаем, что отрезок НD = 3,5.
BC=AD-HD=14-3,5=10,5
ответ: г) 10,5
Abcd-трапеция,abllbc,ab перпендикулярен ad, угол d=60 градусов.найдите основание вс,если cd=7 см,ас
4,4(20 оценок)
Ответ:
annakraevaya061
annakraevaya061
04.08.2021

Окружность, вписанная в правильный треугольник

 

Окружность, вписанная в правильный треугольник, помимо свойств вписанной в произвольный треугольник окружности, обладает своими собственными свойствами.

1) Центр вписанной в треугольник окружности — точка пересечения его биссектрис.

Поскольку в равностороннем треугольнике биссектрисы, медианы и высоты совпадают, то центр вписанной в правильный треугольник окружности является точкой пересечения не только его биссектрис, но также медиан и высот.

okruzhnost-vpisannaya-v-pravilnyj-treugolnikНапример, в правильном треугольнике ABC AB=BC=AC=a

точка O — центр вписанной окружности.

AK, BF и CD — биссектрисы, медианы и высоты треугольника ABC.

   \[AK \cap BF = O,\]

   \[AK \cap CD = O.\]

2) Расстояние от центра вписанной окружности до точки касания её со стороной треугольника равно радиусу. Так как центр вписанной в правильный треугольник окружности лежит на пересечении его медиан, а медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, то радиус вписанной в равносторонний треугольник окружности равен одной третьей длины медианы:

   \[OF = \frac{1}{3}BF,\]

   \[r = \frac{1}{3} \cdot \frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6}\]

Таким образом, формула для радиуса вписанной в правильный треугольник окружности

   \[r = \frac{{a\sqrt 3 }}{6}\]

Обратно, сторона равностороннего треугольника через радиус вписанной окружности:

Объяснение:

4,8(25 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ