дано: авс- равнобедренный треугольник.
ам- медиана.(18.4)
р треугольника авм=79.2
найти: р треугольника авс
решение:
ам является и бессектрисой и медианой и высотой (свойства равнобедренного треугольника.)
следовательно: угол а делиться пополам (так как ам является бессектрисой.) следовательно эти половинки ровны.
ам-общая сторона.
ва=ас (по условию так как треугольник авс равнобедренный.)
следовательно треугольники авм=амс (по 1 признаку.)
следовательно р треугольника авс равен.
(79.2-18.4)• 2
все готово
ΔОАВ - прямоугольный.
Катет(ОА) лежащий против угла 30°(∠АВО) = 1/2 гипотенузы(ОВ)
Значит ОВ = 2ОА = 2 * 4 = 8