Условие задачи составлено не корректно:
Объяснение:
Решение 1) ( Не используем параметр <ВСD=60°)
∆АСD- прямоугольный треугольник
По теореме Пифагора
СD=√(AC²-AD²)=√(18²-13²)=√(324-169)=
=√155см
P(ABCD)=2(AD+CD)=2(13+√155)=
=26+2√155см
ответ: 26+2√155см
Решение 2) (Не используем теорему Пифагора)
∆АСD- прямоугольный треугольник
<СDA=90°; <ACD=60°; <CAD=30°
СD- катет против угла 30°
СD=AC/2=18/2=9см.
Р=2(АD+DC)=2(13+9)=2*22=44см
Решение 3)
(Не используем параметр диагональ АС)
<САD=30°
tg<CAD=CD/AD
tg30°=1/√3
1/√3=CD/13
CD=13/√3=13√3/3 см
Р=2(13+13√3/3)=2(39/3+13√3/3)=(2(39+13√3))/3=(78+26√3)/3 см.
Решение 4)
(Параметр АD≠13;)
СD=AC/2=9 см катет против угла 30°
cos<CAD=AD/AC
cos30°=√3/2
√3/2=AD/18
AD=18√3/2=9√3см
Р=2(АD+CD)=2(9+9√3)=18+18√3см
ответ: 18+18√3
Zmeura1204
квадрат.
Объяснение:
Думаю, что задание звучало по-другому:
"Начертить четырёхугольник, у которого есть минимум 3 прямых угла, и две последовательные стороны имеют одинаковую длину"
Если это так, то рассуждаем следующим образом.
1. Сумма углов четырёхугольника равна 360°. Три из них по условию в сумме дали 270°, тогда и третий равен 90°, речь в задаче по определению идёт о прямоугольнике.
2. Смежные ( соседние, имеющие общую вершину) стороны этого прямоугольника, которые при изображении откладывают последовательно друг за другом, равные. Противолежащие стороны прямоугольника равны по свойству, тогда все стороны получатся равными, данный прямоугольник является квадратом.
ответ: необходимо начертить квадрат.