Рассмотрим треуг. АДС, Раз угол Д тупой, то угол А острый и меньше 90 гра., А раз АД - медиана, то угол ДАС в 2 раза меньше угла А. В треуг. АВС угол С тоже меньше 90 град, т.к. угол В - тупой. Значит в треуг. АДС два угла ДАС и АСД - острые, отсюда выходит, что угол АДС больше 90 град. Значит угол АДС больше угла ДАС, что и требовалось доказать
Вспоминаем свойство диагоналей прямоугольника: Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам. Значит ΔАОД и ΔВОА - равнобедренные, и ∠ОВА=∠ОАВ, ∠ОАД=∠ОДА=90°-50°=40° АЕ=ЕВ, т. к. по условию Е - середина АВ. То есть в ΔВОА ОЕ - медиана. Далее вспоминаем следующее свойство равнобедренного треугольника: Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой. Таким образом ОЕ⊥АВ и ДА⊥АВ, то есть ДА параллельна ОЕ, ∠ОДА+∠ЕОД=180°, как сумма односторонних углов, значит: ∠ЕОД=180°-40°=140°
...Ну и как "Лучшее решение" не забудь отметить, ОК?!.. ;)
Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла. Катеты — стороны, лежащие напротив острых углов. Катет, лежащий напротив угла, называется противолежащим (по отношению к углу ). Другой катет, который лежит на одной из сторон угла, называется прилежащим. Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе. Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе. Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему. Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу. Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу).