ЕСли АВСД - прямоугольник,
1)значит пара сторон(векторов) параллельны АВ(3-4;5-1)=АВ(-1;4)
ДС(-1-0;4-0)=ДС(-1;4)
Чтобы найти координаты вектора из координат конца вектора вычел координаты начала АВ=ДС (это векторы) раз координаты векторов равны то и векторы равны значит параллельны
2)Диагонали прямоугольника равны) - это уже длины
Сначала найду координаты векторов: АС(-1-4;4-1)=АС(-5;3)
ВД(0-3;0-5) =ВД(-3;-5)
Теперь найду длину АС==
ВД=
=
Так как АВ|| ДС; AB= СД; АС=ВД - это АВСД прямоугольник
Объяснение:
6
AD=25
AB=15
BAC=DAC
DB и АВ перпендиккулярны
Накрест лежащие углы CAD и АСВ равны. Тогда АВС равнобедренный и ВС=15
Треугольники ABH и ABD подобны. Отношение:
АВ:АН=АD:АВ
15:АН=25:15
АН=9
Остается найти ВН по теореме Пифагора:
ВН=корень(15^2-9^2)=12
S=(15+25)/2*12=240
ответ: 240
7
Теорема косинусов для треугольника AМC
AC^2=AM^2+MC^2-2*AM*CM*cosAMC
Теорема косинусов для треугольника BМC
BC^2=BM^2+MC^2-2*BM*CM*cosBMC
AC=BC (треугольник равносторонний) Тогда AC^2=BC^2
AM^2+MC^2-2*AM*CM*cosAMC=BM^2+MC^2-2*BM*CM*cosBMC
AM^2-2*AM*CM*cosAMC=BM^2-2*BM*CM*cosBMC
АМ и ВM знаем
2^2-2*2*CM*cosAMC=10^2-2*10*CM*cosBMC
4-4*CM*cosAMC=100-20*CM*cosBMC
Углы ВМС и ВАС равны, опираются на одну дугу. ВАС=60 - равносторонний треугольник.
Угол АМС=АМВ+ВМС=АСВ+ВАС=60+60=120
4-4*CM*cos120=100-20*CM*cos60
4-4*CM*(-1/2)=100-20*CM*1/2
4+2*CM=100-10*CM
12*CM=96
СМ=8
ответ: 8
x^2-4x+4=0
(x-2)^2=0
x-2=0
x=2; y=2*2-4=0
(2;0) координаты общей точки