Чтобы узнать, существует ли такой треугольник со сторонам 3; 3; 8 — надо сравнить каждую сторону с суммой друх других сторон: 8+3 = 11.
Каждая сумма двух сторон должна быть больше каждой стороны, чтобы такой треугольник существовал.
Сумма боковый сторон — 3+3 = 6, которая меньше стороны 8, тоесть треугольник со сторонами 3; 3; 8 — не существует.
Теперь представим, что боковые стороны равны 8; 8, а основание — 3.
3+8 = 11 > 3;
8+8 = 16 > 3
8+3 = 11 > 3.
В этом случае, треугольник сущестует, а основание — 3, боковые стороны — 8; 8.
Окружность, проходящая через все три вершины треугольника, называется его описанной окружностью. Центр описанной окружности лежит на пересечении серединных перпендикуляров к сторонам треугольника. Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.Описанная окру́жность многоугольника — окружность, содержащая все вершины многоугольника. Центром является точка (принято обозначать {\displaystyle O}O) пересечения серединных перпендикуляров к сторонам многоугольника.Если все стороны треугольника касаются окружности, то окружность называется вписанной в треугольник, а треугольник - описанным около этой окружности.
Теорема. В любой треугольник можно вписать окружность и при этом только одну.
Центр вписанной в треугольник окружности находится в точке пересечения его биссектрис
Объяснение:
r=0.4
ответ: L=0.8Pi