М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Найдите площадь равнобедренного треугольника, в котором боковая сторона 4 под корнем 5 см, а радиус описанной окружности 5 см.

👇
Ответ:
llGeexyll
llGeexyll
28.03.2022
Пусть у нас тр-ик АБЦ. Б - вершина. Из точки Б опустим высоту БД. Она пройдёт через центр окружности О. Из точки О опустим перпендикуляр ОЕ на сторону БЦ. Тогда БЕ равно 2, а ОБ равно 5. Через косинус мы можем найти угол ДБЦ. А затем по косинусу найдём и саму высоту.
4,4(5 оценок)
Открыть все ответы
Ответ:
mathmatic2882
mathmatic2882
28.03.2022

11. Треугольник ACK равнобедренный, AK -- основание, CM -- высота.

∠CAK = ∠CKA = 70°: треугольник равнобедренный, прилежащие к основанию углы равны.

∠ACK = 180° – (70° + 70°) = 40°: в любом треугольнике сумма углов равна 180°.

∠ACM = ∠KCM = 40° / 2 = 20°: в равнобедренном треугольнике проведенная к основанию высота является биссектрисой.

12. Треугольник BDC равнобедренный, BC -- основание, DK -- медиана.

∠BDK = ∠CDK = 15°, ∠BDC = 15° + 15° = 30°, ∠DKB = ∠DKC = 90°: в равнобедренном треугольнике проведенная к основанию медиана является биссектрисой и высотой.

∠DBC = ∠DCB = (180° – 30°) / 2 = 75°: в равнобедренном треугольнике прилежащие к основанию углы равны между собой, а сумма всех углов любого треугольника равна 180°.

4,4(15 оценок)
Ответ:

Дано: (СА; γ)=(СВ; γ)=α; АСВ=β

Найти: sin(ABC; γ)

Решение: Чтобы найти угол между двумя плоскостями, нужно провести в каждой плоскости перпендикуляр к линии пересечения этих плоскостей, угол между этим перпендикулярами и будет углом между плоскостями.

Проведем СН перпендикулярно плоскости γ и СМ - биссектрису угла АСВ. Так как углы наклона СА и СВ к плоскости γ равны, то СА=СВ, следовательно треугольник АСВ равнобедренный и СМ является также медианой и высотой. Аналогично, проекции равных отрезков на плоскость γ равны между собой НА=НВ, а НМ является биссектрисой, медианой и высотой в равнобедренном треугольнике АНВ.

Распишем искомый синус угла:

Чтобы найти СН сделаем планиметрическую картинку треугольника АСН и запишем синус известного угла CAH:

Чтобы найти СМ аналогично изобразим картинку треугольника АСВ. Так как СМ - биссектриса, то угол АСМ равен (β/2). Рассмотрим треугольник АСМ:

Подставляем найденные величины в формулу для синуса искомого угла:

Объяснение:

Всё.

4,8(95 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ