В телах, "подобных" друг другу (то есть, когда одно получается из другого пропорциональным изменением масштабов), объём пропорционален кубу линейного размера.
Поэтому объем малого и большого конусов относятся, как (r/R)^3, а объем усеченного конуса составляет 1-(r/R)^3 от объема большого (у которого в основании R>r)
На самом деле, в этом очевидном решении легко навести "строгость".
Высоты малого и большого конусов пропорциональны радиусам, а площади - квадратам радиусов. Поэтому объем пропорционален радиусу в кубе.
Отрезок, соединяющий вершину и границу основания, называется образующей конуса.
Проще говоря l образующая. r - радиус. h - высота. Площадь осевого сечения равна h*d, где d=2r
d=5+5=10
l=R/cos60=5/( 0,5)=10
H-высота конуса
H= l /cos30 =10/ √3/2= 20√3
S сеч=h*d=20/√3 * 10 = 200/√3= 200*√3 / 3