1) угол 5 = угол 8 = угол 1 = угол 4 = 124 градуса
угол 6 = угол 7 = угол 2 = угол 3 = 180-124=56 градусов
2) угол 2 = угол 3 (если смотреть по первому рисунку, на этом рисунке обозначеия нет) = 180 — угол 1
т.е. угол 6 + угол 1 = 180
если сумма внутренних односторонних углов равна 180 градусов, значит прямые параллельны
3) угол 1 = угол 4 (если смотреть номера по первому рисунку) — они вертикальные
угол 1 = угол 4, значит угол 4+угол 2=180 градусов
если сумма внутренних односторонних 180, значит а и b параллельны
угол 2 = угол 3 — соответствующие
если соответствующие углы равны, значит b и с параллельны
т.к. a параллельна b и с параллельна b, значит а параллельна с
ΔАСВ - прямоугольный : АВ - гипотенуза ; АС,СВ - катеты
∠С= 90°
∠В = 60°
Сумма острых углов прямоугольного треугольника равна 90°.
Следовательно: ∠А = 90 - 60 = 30°
Катет лежащий против угла в 30° равен половине гипотенузы.
СВ = АВ/2
По теореме Пифагора:
АВ² = АС² + СВ² ⇒ АВ² = АС² + (АВ/2)²
АС= √ (АВ² - (АВ²/4)) ⇒ АС = √ ((4АВ² - АВ²)/4) = √(3АВ²/4) = (АВ*√3) /2
S =1/2 * АС * СВ = 18√3 / 3
1/2 * ((АВ*√3)/2 * (АВ/2)) = 18√3 / 3
1/2 * ( (АВ²*√3) / 4 ) = 18√3 / 3
АВ²√3 / 8 = 18√3 / 3
3 *√3* АВ² = 18√3 * 8
АВ² = 144√3 / 3√3
АВ² = 48
АВ = √48 = √(16*3) = 4√3 - гипотенуза
СВ = 4√3 /2 = 2√3 - один катет
АС = (4√3 *√ 3)/2 = (4*(√3)²)/2 = 12/2 = 6 - второй катет, который лежит против угла В = 60°.
ответ: АС = 6.