A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает
2часть прямой, состоящая из данной точки и всех точек, лежащих по одну сторону от неё
3 точка отсчета, начало луча
4 бесконечные промежутки (полупрямые) числовой прямой
5 называется начальной точкой
6 Геометрическая фигура состоящая из двух точек А и В и всех точек прямой АВ, лежащих между ними, называется отрезком АВ
7 двумя точками , которые его ограничивают
8 отрезок можно разделить на конечное кол-во отрезков , их длину можно складывать
9 AВ , CD
AB=CD
10 находится на равном расстоянии от обоих концов данного отрезка
Найдите площадь боковой поверхностью конуса у которого высота равна 3 корня из двух см и составляет с образующей угол 45 гр.
Рассмотрим треугольник SOA. Это прямоугольный треугольник. Так как угол SAO по условию равен 45 градусам ⇒ треугольник равнобедренный ⇒ Радиус основания ОА = 3√2 (см.)
Тогда по т. Пифагора найдем образующую конуса SA:
SA² = (3√2)² + (3√2)²
SA² = 18 + 18
SA² = 36
SA = 6 (см.)
Площадь боковой поверхности конуса находим по следующей формуле:
S(бок.) = п * r * l , где r - радиус основания, l - образующая.
S(бок.) = 6 * 3√2 *п = 18√2п (см²)
ответ: 18√2п (см²)