Получается сначала чертим вправо(раз на восток), затем вверх(раз на север), потом соединяем "точку отправления" с "точкой прибытия". И у нас получается прямоугольный треугольник. Надеюсь понятно объяснила, как мы построили его. Далее получается один из катетов 250, другой 240, и нам не известна гипотенуза. Далее действуем по теореме Пифагора: 240²+450²=57600+202500=260100=510. ответ: Расстояние=510 м. Если, что то не понятно, спрашивай.
АВСЕ - пирамида с вершиной Е. В основании лежит правильный тр-ник, для которого радиус описанной окружности в два раза больше радиуса описанной окружности. r=R/2. ОК=ОВ/2=2а/2=а. ЕК - апофема на сторону АС. В тр-ке ЕКО ЕК²=ЕО²+ОК²=3а²+а²=4а², ЕК=2а - апофема. б) ЕК/ОК=2а/а=2. В прямоугольном треугольнике ЕОК гипотенуза ЕК вдвое больше катета ОК, значит ∠КЕО=30°, следовательно ∠ЕКО=60° - угол между боковой гранью и основанием. в) Площадь боковой поверхности: Sб=Р·l/2, где Р - периметр основания, l - апофема. R=AB/√3 ⇒ AB=R√3=2a√3. P=3AB=6a√3. Sб=6a√3·2a/2=6a²√3 (ед²).
Расскажу 3-ю. Пусть даны точки А и В и прямая m. 1) Построим точку D, в которой искомая окружность будет касаться прямой m. a) Если AB||m, то D - пересечение серединного перпендикуляра к АВ с прямой m, и тем самым D построена. б) Пусть прямая АВ пересекает m в точке С и пусть B лежит между А и С. Тогда по свойству касательной и секущей должно быть СD²=АС·BC. Строим окружность с диаметром AC, а через B проводим перпендикуляр к AC до пересечения с этой окружностью в точке E. Тогда AEC - прямоугольный треугольник и поэтому EC²=АС·ВС. На m откладываем отрезок CD равный EC, так чтобы угол ACD был острый. Тем самым D найдена.
2) Строим серединные перпендикуляры к AD и к BD. Их пересечение и есть центр искомой окружности.
P.S. Если AB перпендикулярно m и A,B не лежат на m, то такую окружность, ясное дело, построить нельзя.
DB^2 = DA^2 + BA^2
DB^2 = 450^2 + 240^2
DB^2 = 260100
DB = 510
ответ: мальчик метров.