Cм. рисунок и обозначения в приложении По теореме косинусов (2√3)²=6²+х²-2·6·х·cos 30° 12=36+x²-6√3·x=0 x²- 6√3·x+24=0 D=108-96=12 x=(6√3-2√3)/2=2√3 или х=(6√3+2√3)/2=4√3
если х=2√3, то диагональ делит параллелограмм на два равнобедренных треугольника. Углы параллелограмма 60° и 120°
если х=4√3 то по теореме косинусов ( α - угол параллелограмма , лежащий против диагонали) 6²=(2√3)²+(4√3)²-2·2√3·4√3 ·cos α ⇒ 36=12+48-48·cosα⇒
cosα=0,5
α=60° второй угол параллелограмма 120° см. рисунок 2 ответ 120° и 60°
Соединим точку О с точками А, В, С . Получим два треугольника ОАВ и ОВС. Они равнобедренные оба, т.к. стороны ОА, ОВ, ОС являются радиусами окружности. Рассмотрим треугольник ОАВ, раз в нем угол ОАВ равен 43 градусам, то угол АВО тоже будет равен 43 градусам, как углы при основании равнобедренного треугольника. Определим угол ОВС в треугольнике другом. Раз угол АВС равен 75градусам из условия задачи, то угол ОВС будет равен 75-43=32 градуса. А искомый угол ВСО будет равен углу ОВС как угол при основании равнобедренного треугольника ., т.е .искомый угол ВСО=ОВС=32 градуса. ответ: угол ВСО=32 градуса
Сумма двух острых углов в прямоугольном треугольнике равна 90°. Отсюда находим что ∠B=90°-∠A=90°-30°=60°
ответ: ∠B=60°