Диагональ делит трапецию на два треугольника с основаниями 1 и 19 соответственно. Очевидно, что средняя линия второго тр-ка больше средней линии первого, а в сумме они образуют среднюю линию трапеции. Средняя линия тр-ка с основанием 19 равна: L=19/2=9.5 - это ответ.
Диагонали ромба взаимно перпендикулярны. AOD - прямоугольный треугольник. ОР - высота из прямого угла в треугольнике AOD. ОР=√(АР*РD)=√(6√3*2√3)=6см. По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см. R=AJ=JO=JP = АО/2 = 6см. Площадь круга Sк=π*R²=36π. В прямоугольном треугольнике АРО катет ОР равен половине гипотенузы АО, значит <PAO=30°, <РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°. <PJK=120°(центральный угол, опирающийся на дугу РОК). РН=0,5*АР=3√3см (катет против угла 30°). AH=√(АР²-РH²)=√(108-27)=9см. Площадь треугольника АКР равна Sapk=AH*PH=9*3√3=27√3см². Площадь сегмента КОР равна Skop=(R²/2)*(π*α/180 -Sinα) - формула. В нашем случае α=<PKJ =120°. Skop=(36/2)*(π*120/180 -√3/2) Skop=(12π-9√3)см². Искомая площадь равна S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².
Пусть треугольник с углом А = 90 и основанием АС. Угол ВСА = 45 градусов. косинус угла 45 = АС : ВС ( прилежащий катет к гипотенузе ) косинус 45 = корень из 2 : 2 корень из 2 : 2 = АС : 10 АС = (10* корень из 2) : 2 = 5 корней из 2 По теореме Пифагора найдем ВА ВА^2 = 100 - 50 ВА=корень из 50 = 5 корней из 2 Площадь прямоугольного треугольника равна 1/2 произведения катетов ( 1/2 *a*b ) ВА и АС - катеты, ВС - гипотенуза, значит S = 1/2 * 5 корней из 2 * 5 корней из 2 S = 1/2 * 50 = 25. ( Если есть наименование (см,м,дм) , не забудь поставить квадрат! )
Средняя линия тр-ка с основанием 19 равна:
L=19/2=9.5 - это ответ.