можно было и больше поставить, задачка прикольная).. итак поехали:
стороны основания 5, 12 и 13 - это стороны прямоугольного треугольника
(25+144=169 теорема пифагора), а значит радиус вписаной окружности в основание равен р=(5+12-13)/2=2.. есть такая формула)
т.к. угол наклона у граней одинаковый, то и высоты у треугольников составляющих эти грани тоже будут одинаковы и будут составлять с высотой пирамиды и радиусом вписаной окружности в основание одинковые прямоугольные треугольники, и будут равны:
Н=корень( (4*корень(2))^2 + 2^2 ) = 6
площадь боковой поверхности пирамиды равна сумме площадей её граней, найдём каждую полупроизведением высот на их основания:
S= 5*6/2+12*6/2+13*6/2 = 15+36+39 = 90
из боковой грани-равнобедренного тр-ка, находишь боковое ребро. оно равно sqrt(169-25)=12
проекция высоты пирамиды на пл-ть основания-центр квадрата, из тр-ка, образованного боковым ребром, половиной диагонали кв-та-проекцией ребра на основание и, собственно, высотой, найдем высоту: H^2= 144-50=94; H=sqrt(94)