Сумма углов треугольника равна 180°.
В ΔABC:
∠A+∠B+∠C = 180°;
∠B = 180°-(∠A+∠C) = 180°-(60°+40°) = 80°.
Биссектриса делит угол пополам.
∠DBC = ∠ABC:2 = 80°:2 = 40°, как угол при биссектрисе BD.
Если в треугольника два угла равны, то он равнобедренный.
∠DBC = 40° = ∠DCB ⇒ ΔDBC - равнобедренный, ч.т.д.
Стороны треугольника, лежащие напротив равных углов, равны.
В ΔDBC:
сторона BD лежит напротив ∠DCB;
сторона DC лежит напротив ∠DBC;
∠DBC = ∠DCB ⇒ BD = DC.
ответ: BD = DC.
Объяснение:
Наверно , но ты сказал что амне 15дают!
Объяснение:
170 см²
S=ah (где h-высота; a-сторона, к которой проведена высота).
У нас есть прямая AP, которая со стороной MT образует угол PAM, который равен 90°, а следовательно АР является высотой этого параллелограмма.
Численно нам известна сторона МТ(МТ=7+10=17см), к которой проведена высота АР, но не известна сама высота. Рассмотрим треугольник АРТ, мы знаем, что угол А равен 90°, угол Р равен 45°, значит угол Т=180-90-45=45°; т.к. углы при основании равны, то треугольник является равнобедренным и его боковые стороны равны, а значит АТ=АР=10 см.
Теперь по формуле узнаем площадь: S=17*10=170 см²