По теореме о пересекающихся хордах: AK*BK=CK*DK пусть CD=x тогда CK=x/2-7/2 DK=x/2+7/2 Подставим эти значения в первое равенство: 4*15=(x/2-7/2)*(x/2+7/2) 16*15=x²-49 x²=289 x=17
Радиус вписанной в многоугольник окружности равен отношению его площади к полупериметру r=S:p, где р - полупериметр Треугольник тоже многоугольник, и радиус вписанной в него окружности найдем по этой формуле. Чтобы найти площадь треугольника, нужно знать его третью сторону, основание. Высота известна, боковая сторона - тоже. Высота делит равнобедренный треугольник на два равных прямоугольных, в которых боковая сторона - гипотенуза. высота и половина основания - катеты.. Найдем половину основания по т.Пифагора: 0,5а=√(225-144)=9 см Основание равно 2*9=18 см Площадь треугольника S=ah:2=18*12:2=108 см² полупериметр р=(18+30):2=24 r=108:24=4,5 см
Треугольник равнобедренный. Для вписанной в равнобедренный треугольник окружности, когда известны все стороны и высота, можно вывести формулу: r=0,5*bh:0,5(2a+b) или произведение высоты на основание, деленное на периметр. r=bh:Р r=18*12:(30+18)=4,5 --- [email protected]
Радиус вписанной в многоугольник окружности равен отношению его площади к полупериметру r=S:p, где р - полупериметр Треугольник тоже многоугольник, и радиус вписанной в него окружности найдем по этой формуле. Чтобы найти площадь треугольника, нужно знать его третью сторону, основание. Высота известна, боковая сторона - тоже. Высота делит равнобедренный треугольник на два равных прямоугольных, в которых боковая сторона - гипотенуза. высота и половина основания - катеты.. Найдем половину основания по т.Пифагора: 0,5а=√(225-144)=9 см Основание равно 2*9=18 см Площадь треугольника S=ah:2=18*12:2=108 см² полупериметр р=(18+30):2=24 r=108:24=4,5 см
Треугольник равнобедренный. Для вписанной в равнобедренный треугольник окружности, когда известны все стороны и высота, можно вывести формулу: r=0,5*bh:0,5(2a+b) или произведение высоты на основание, деленное на периметр. r=bh:Р r=18*12:(30+18)=4,5
AK*BK=CK*DK
пусть CD=x тогда
CK=x/2-7/2
DK=x/2+7/2
Подставим эти значения в первое равенство:
4*15=(x/2-7/2)*(x/2+7/2)
16*15=x²-49
x²=289
x=17