Пусть ABC - равнобедренный
∟B = 120 °, АС = 18 см, АК - высота.
В ΔАВС проведем высоту BD к основанию АС.
По свойству равнобедренного треугольника BD - биссектриса и медиана
AD = DC = 1 / 2AC = 18: 2 = 9 (см) (BD - медиана).
∟AВD = ∟DBC = 1 / 2∟В = 120 °: 2 = 60 ° (BD - биссектриса).
Рассмотрим ΔABD - прямоугольный (∟D = 90 °, BD - высота):
∟BAD + ∟ABD = 90 °; ∟BAD = 30 °; ∟BAD = ∟BCD = 30 ° (ΔABC - равнобедренный).
Рассмотрим ΔАКС (∟К = 90 °, АК - высота):
АК - катет, лежащий напротив угла 30 °, тогда АК = 1 / 2АС; АК = 18: 2 = 9 (см).
ответ: Высота AK= 9 см
Допусти, что скорость 1-го бегуна = Х км/ч,
тогда скорость 2-го бегуна = Х+5 км/ч
Поскольку в задании сказано, что "Спустя один час, когда
первому из них оставалось 1 км до окончания первого круга, ему сообщили, что второй бегун первый круг 15 минут назад", значит 2-й бегун пробежал первый круг за время = 1 час - 15 минут = 45 минут
45 минут = 45/60 = 0,75 часа
Длина круга = скорость бегуна * время, которое потрачено на преодоление одного круга.
Поэтому Длина круга = скорость 1-го бегуна * время, которое потрачено на преодоление одного круга 1-м бегуном = (Х+5) * 0,75= 0,75Х + 3,75
Поскольку в задании сказано, что "Спустя один час, когда
первому из них оставалось 1 км до окончания первого круга..."
Значит Длина круга = скорость 2-го бегуна * время, которое потрачено 2-м бегуном + 1 км, который оставался до окончания первого круга= Х * 1 +1 = Х+1
Поэтому сможем составить уравнение:
0,75Х + 3,75 = Х+1
Х-0,75Х = 3,75-1
0,25Х = 2,75
Х=2,75/0,25
Х=11 - это скорость 1-го бегуна
Тогда скорость 2-го бегуна = Х+5 = 11+5=16 км/ч
ответ: скорость 2-го бегуна = 16км/ч