если треугольник прямоугольный то квадрат самой длиной стороны равен сумме квадратов двух других сторон. 7^2 = 5^2 + 6^2 . 49=25+36. 49=61 неверно, значит треугольник не прямоугольный. Чтобы определить остроугольный он или прямоугольный нужно найти косинус самого большого угла(он лежит против большей стороны).
cosA=(5^2 + 6^2 - 7^2)/2*5*6=12/60=0.2 > 0, значит треугольник остроугольный. Для остальных треугольников поступаем также. Для третьего треугольника 5=3+2 верно, значит треугольник прямоугольный. Для второго треугольника не хватает ещё одной стороны
если треугольник прямоугольный то квадрат самой длиной стороны равен сумме квадратов двух других сторон. 7^2 = 5^2 + 6^2 . 49=25+36. 49=61 неверно, значит треугольник не прямоугольный. Чтобы определить остроугольный он или прямоугольный нужно найти косинус самого большого угла(он лежит против большей стороны).
cosA=(5^2 + 6^2 - 7^2)/2*5*6=12/60=0.2 > 0, значит треугольник остроугольный. Для остальных треугольников поступаем также. Для третьего треугольника 5=3+2 верно, значит треугольник прямоугольный. Для второго треугольника не хватает ещё одной стороны
Доказательство
1) Возьмем произвольную точку M на биссектрисе угла BAC, проведем перпендикуляр MK и ML к прямым AB и AC
Рассмотрим прямоугольные треугольники AMK и AML. Они равны по гипотенузе и острому углу. (AM - общая гипотенуза, ∠1∠2 по условию\). Следовательно, MKML
2) Пусть точка M лежит внутри угла BAC и равноудалена от его сторон AB и AC. Докажем, что луч AM - биссектриса угла BAC
Проведем перпендикуляры MK и ML к прямым AB и AC. Прямоугольные треугольники AMK и AML - равны по гипотенузе и катету (AM - общая гипотенуза, MKML по условию ). Следовательно, ∠1∠2. Но это и значит, что луч AM - биссектриса угла BAC. Теорема доказана