1) Объем шара V1=4pir^2; 4pir^2=36pi; r^2-9; r=3. 2) Осевым сечением конуса будет равносторонний тр-к, а шара - круг, вписанный в этот тр-к. Центр вписанного в тр-к круга лежит в точке пересечения биссектрис. Но в равностороннем тр-ке это и медианы и высоты. Точка пересечения медиан делит медиану в отношении 2:1, считая от вершины. Значит высота тр-ка равна 3*3=9 Это и высота конуса h=9. 3) R - радиус основания конуса. По определению тангенса tg60o=h/R; R=h/tg60 = 9/V3 = 3V3. 4) Объем конуса V= (1/3)piR^2*h = (1/3)pi*(3V3)^2 * 9 = 1/3pi * 27 * 9=81pi кв. ед. ответ: 81pi кв. ед.
На картинке схематически представлен чертёж, как выглядит картинка в середине белой бумаги. Ширина картинки 27. Длина картинки 43. Расстояние от картинки до края белой бумаги равно x(это и есть ширина окантовки). Чтобы лучше представить что нужно сделать, можно схематически изобразить смещение картинки до края бумаги, тогда с другой стороны ширина окантовки будет в 2 раза больше, то есть 2x. Вторым шагом можно сместить картинку вверх, тогда ширина окантовки снизу будет 2x. Так как известна площадь картинки и окантовки (1785см²), и зная что площадь прямоугольника это произведение одной стороны на другую, несложно догадаться что делать дальше. Так как 27+2x это ширина белой бумаги. 43+2x это длина белой бумаги. Составим уравнение.
Задача: Стороны треугольника равны 4 см, 12 см и 15 см. Найдите периметр подобного треугольника, меньшая сторона которого равна 12 см.
ΔABC ∝ ΔKOT (по условию)
⇒ у ΔKOT стороны в 3 раза больше, чем у ΔABC
KO = 3 * AB = 3 * 12 = 36 см
KT = 3 * AC = 3 * 15 = 45 см
OT = 12 см (по условию)
P ΔKOT = KO + KT + OT = 12 см + 36 см + 45 см = 93 см
ответ: 93 см