А С А1 О С1 т.к. треугольники равнобедренные, то высота является и биссектрисой. т.к. треугольники равны, то уголВ=углуВ1=32*2=64градуса. Это решение, если АС - основание.
А А1 О С В С1 В1 если основание ВС: уголА=углуА1=180-90-32=58градусов уголВ=углуС=углуВ1=углуС1=(180-58):2=61градус.
Раз такого варианта ответа нет, значит подразумевается, что основание АС. Тогда ответ: 64градуса.
Пирамида правильная, значит в основании лежит правильный треугольник. ВСЕ ребра равны. Следовательно ВСЕ грани - равные правильные треугольники. Значит апофема (высота боковой грани) равна высоте основания пирамиды. Высота правильного треугольника находится по формуле (√3/2)*а, где а - сторона треугольника. В нашем случае DH=DO=√3. Или так: по Пифагору, например из треугольника ADH: DH=√(AD²-AH²) или DH=√(4-1)=√3. (АН=0,5АС - так как DH - высота и медиана правильного треугольника АDС) Итак, апофему нашли. В правильной пирамиде высота из вершины проецируется в центр основания О. В правильном треугольнике АВС высота ВН делится точкой о в отношении 2:1, считая от вершины В. Значит ОН= √3/3. (так как ВН=DH=√3). Тогда из прямоугольного треугольника DOH найдем по Пифагору DO. DO=√(DH²-OH²) или DO=√(3-3/9)=2√(2/3) = 2√6/3. ответ: апофема равна √3, высота пирамиды равна 2√(2/3) или 2√6/3.
Пусть <ВАМ=α,тогда <АВС=180⁰-α.
<МВК=<АВС-(<АВМ+<КВС). <АВМ=90⁰-α,как острый угол прямоугольного т-ка АВМ.
Аналогично <СВК=90⁰ -<С=90⁰-α (<С=<А=α,как противоположные углы параллелограмма). <МВК=180⁰-α-((90⁰-α)+(90⁰-α))=180⁰-α-(180⁰-2α)=
=180⁰-α-180⁰+2α=α=<ВАМ,<МВК=<ВАМ,что и требовалось доказать.