1. Если MN=NK, следовательно, треугольник MNK равнобедренный. ⇒ MN = 11, NK = 11. В равнобедренном треугольнике биссектриса, проведенная к основанию, является и медианой и высотой. Значит, что MD=DK=3,5. Все основание MK=7. Из этого легко вытащить периметр: Р=MN+NK+MK=11+11+7=29 3. Смотря какой угол брать. Если в треугольнике АВС, где В - вершина и именно угол В брать под эти значения, то остальные углы будут равны: а) ∠А=∠С=180°-58°=122°:2=61° ∠А=∠С=61° б) 180°-20°=160°:2=80° ∠А=∠С=80° в) 180°-80°=100°:2=50° ∠А=∠С=50°
Пирамида правильная, т. е. проекция вершины на основание совпадает с пересечением его диагоналей. В квадрате длина диагонали «сторона квадрата» множить на корень из 2-х (можно сослаться на теорему Пифагора – квадрат гипотенузы равен сумме квадратов катетов, поскольку треугольник имеет прямой угол). Диагональ квадрата – она же и основание треугольника в указанном сечении пирамиды. Угол (при учёте, что треугольник прямоугольный) вычисляется как арктангенс отношения противолежащего катета к прилежащему. Противолежащий – это высота из условия, а прилежащий – половина диагонали квадрата в основании. Если подставить все известные данные, то получается дробь: делимое - 5 корней из 6-ти, а делитель - 10 корней из 2-х делённое на 2. После «перекочёвки» 2-ки к 5-ке и сокращения остаётся корень из 6 делить на корень из 2-х или просто корень из 3-х. Арктангенс корня из 3-х ровно 60 градусов. Площадь сечения просто получается перемножением катетов того же треугольника (половинки сечения). 5 корней из 6 множить на 10 корней из 2-х делённых на 2. Всё легко сокращается до вида 50 корней из 3-х.
Население 2.5 млн человек