1. Центр описанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника.
Верно не всегда. Если угол при вершине треугольника тупой, то центр описанной окружности лежит на продолжении высоты, проведенной из вершины, вне треугольника.
2. Если в треугольнике АВС углы А и В равны соответственно 40 и 70, то внешний угол при вершине С этого треугольника равен 70.
Неверно. Внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Значит внешний угол при вершине С равен 40° + 70° = 110°.
3. Все хорды одной окружности равны между собой.
Не верно. Хорда - отрезок, соединяющий любые две точки окружности. На рисунке АВ ≠ CD.
Т. к проведена высота к стороне параллелограмма, то образуется угол 90 градусов, если рассмотреть треугольник, то он будет равнобедренный (180-(90+45)=45 градусов второй угол), а значит сторона треугольника будет равна 4 см, а сторона параллелограмма будет 8 см (т. к разделена пополам), найдем еще одну сторону параллелограмма, это периметр минус удвоенное произведение известной стороны и все разделить пополам (27,4 - 2*8)/2= 5, 7 см значит стороны параллелограмма 8 см и 5,7 см диагональ соответственно равна его стороне т.е 5,7 см