Есть пирамида АВСДА1В1С1Д1, где АВСД - нижнее основание, О - центр нижнего основания, т.Л - середина стороны СД. Аналогично назовем Л1 и О1 для верхнего основания А1В1С1Д1. Восстановим вершину усеченной пирамиды и назовем ее т.К.
Рассмотрим прямоугольный треугольник КЛО: т.к. КО - катет, лежащий против угла КЛО=30 градусов, то КЛ=2*КО. ОЛ=АД/2=24/2=12. Примем КО за х. Тогда КО^2+ОЛ^2=КЛ^2; х^2+12^2=(2х)^2; х=КО=4*корень из 3; КЛ=8*корень из 3.
Из подобия треугольников КЛО и КЛ1О1:
ОЛ/О1Л1=КО/КО1, отсюда КО1=О1Л1*КО/ОЛ=(20/2)*(4*корень из 3)/12=10/корень из 3
V усеч. = V(КАВСД) - V(КА1В1С1Д1)=S(АВСД)*КО/3- S(А1В1С1Д1)*КО1/3=
=24*24*4*(корень из 3)/3-20*20*(10/корень из 3)/3=2912/(3*корень из 3)
1) Формула объёма конуса V=S•H:3=πr²H:3
Формула объёма шара
V=4πR³:3
Осевое сечение данного конуса - равносторонний треугольник, т.к. его образующая составляет с плоскостью основания угол 60°.
Выразим радиус r конуса через радиус R шара.
r=2R:tg60°=2R/√3
V(кон)=π(2R/√3)²•2R²3=π8R³/9
V(шара)=4πR³/3
V(кон):V(шар)=[π8R³/9]:[4πR³/3]=(π•8R³•3/9)•4πR³=2/3
———————
2) Формула объёма цилиндра
V=πr²•H
Формула площади осевого сечения цилиндра
S=2r•H
Разделим одну формулу на другую:
(πr²•H):(2r•H)=πr/2⇒
96π:48=πr/2⇒
4π=πr
r=4
Из площади осевого сечения цилиндра:
Н=S:2r=48:8=6
На схематическом рисунке сферы с вписанным цилиндром
АВ- высота цилиндра, ВС - его диаметр,
АС - диаметр сферы.
АС=√(6²+8²)=√100=10
R=10:2=5
S(сф)=4πR8=4π•25=100π см²