Найдем длины сторон четырехугольника
AB^2=(9-6)^2 +(0-(-1))^2=3^2 +1^2=9+1=10
BC^2=(10-9)^2 +(-2-0)^2=1+4=5
CD^2=(7-10)^2 +(-3+2)^2=9+1=10
AD^2=(7-6)^2 +(-3+1)^2=1+4=5
Следовательно, AB=CD; BC=AD
АВСД-параллелограмм(по признаку)
АС - 1/2 ВД=(4;-1) - (-1;-1,5)=(4+1;-1+1,5)=(5;0,5), так как
вектор АС=(10-6;-2-(-1))=(4;-1)
ВД=(7-9;-3-0)=(-2;-3); 1/2ВД=(-1;-1,5)
не понимаю по-украински, если надо построить, то
проводимАК||BD; AK=BO
lдостраиваем до параллелограммма на сторонах АК и АС, получим точку Е, АСЕК-пар-мм
вектор Ас-АЕ=ЕС, т. е.проводим диагональ ЕС(стрелочка в точку С)
21, 96 м.
Объяснение:
Чтобы найти расстояние d от пункта A до недоступного пункта C, на местности выбрали точку B и измерили длину с отрезка AB и углы α и β. Найдите расстояние от пункта A до пункта C, если AB = 30 м, α = 60°, β = 45°
————
Сделав рисунок по условию задачи, получим треугольник АВС с основанием АВ и углами ∠САВ=60° и ∠СВА=45°.
Из суммы углов треугольника ∠АСВ=180°-(45°+60°)=75°
По т.синусов АВ:sin75°=AC:sin45°.
Табличное значение sin75°= (√3+1)/2√2; sin45°=√/2 ⇒
30•2√2:(√3+1)=d:(√2/2) ⇒
AС=d= 60/(√3+1) или ≈ 21,96 м.