Объяснение:
Доказательство: Пусть даны две прямые a и b. Предположим, что они имеют более одной общей точки - точки M и N. Тогда через две точки M и N проходила бы не одна, а две прямые - прямые a и b. Но это противоречит аксиоме. Конец доказательства.
Что мне не нравится в доказательстве: Хорошо, мы доказали, что две разные прямые не могут иметь две общие точки. Но для меня ситуация выглядит так, что мы доказали только этот частный случай. А если мы возьмем три общие точки или больше? Не похоже, чтобы аксиома запрещяла, чтобы две разные прямые имели три общие точки.
Умом-то я понимаю, что если две прямые имеют более одной общей точки, то они являются одной и той же прямой. Но вот строго доказать, увы, не могу. И мне кажется, что для этого хватит все той же аксиомы. А вся моя проблема проистекает из-за неверного понимания самой аксиомы, которая скорее всего запрещяет и случаи с большим количеством общих точек.
МОЛОДЦЫ ДЕРЖИТЕСЬ УДАЧИ ВАМ -^-)
ответ:1) общая сторона, сторона, угол между ними
2ообщая сторона,угол(90 градусов), а другой прилежащий угол в первом это - 90- 3 угол, а в другом тоже самое( или же используй признаки прямоугольного треугольника ).
3)угол(90), сторона, и ещё угол(вертикальные).
Объяснение:
Здесь второй вариант:
1)общая сторона, сторона, теперь нам нужен ещё один прилежаний угол(используй признак прямоугольного треугольника, но я покажу свой): это 180-90- известный угол, в другом треугольнике этот же угол такой же ( ведь углы равны),поэтому ЧТД(доказано).
2)антологичного , как в другом варианте(3 номер)
3)общая сторона,угол, находим прилежащий(как в задачах). Все. Есть вопросы, спрашивай, обязательно отвечу.
Тр-ки ЕФС и ЕФМ равны , т.к. ∠ФЕС=∠ФЕМ, ЕФ - общая сторона и оба прямоугольные, значит все соответственные элементы в них равны.
ФМ=ФС=13 см - это ответ.