Через вершину выпуклого n-угольника проходит d = n*(n-3)/2 диагоналей. Доказать это просто: 1) Из каждой вершины выходит n-1 отрезок к остальным n-1 вершине. Но к двум соседним вершинам - это стороны, а не диагонали. Поэтому из каждой вершины выходит n-3 диагонали. Вершин всего n, поэтому получается n*(n-3) диагоналей. 2) Каждая диагональ соединяет две вершины. Если мы провели диагональ АС, то одновременно мы провели диагональ СА. Поэтому количество диагоналей нужно разделить пополам. Получается d = n*(n-3)/2 1) n = 4, d = 4*1/2 = 2 2) n = 5, d = 5*2/2 = 5 3) n = 6, d = 6*3/2 = 9 4) n = 10, d = 10*7/2 = 35
Пусть О1, О2 и О3 - центры данных нам окружностей, точки А, В и С - точки их касания. Тогда О1А=О1С=2, О2А=О2В=3, О3В=О3С=4. Значит стороны треугольника О1О2О3 равны:5,6 и 7. Тогда площадь этого треугольника по Герону равна: S=√[p*(p-a)(p-b)(p-c)], где р - полупериметр, а,b,с - стороны треугольника. р=(5+6+7)/2=9. S=√(9*4*3*2)=6√6. Заметим, что окружность, описанная вокруг треугольника АВС - это вписанная в треугольник О1О2О3 окружность, так как точки А, В и С окружности принадлежат сторонам О1О2,О2О3 и О3О1 соответственно. Докажем это. Есть формула нахождения длины отрезка от вершины треугольника до точки касания с вписанной окружностью: расстояние от вершины С треугольника до точки, в которой вписанная окружность касается стороны, равно d=(a+b-c)/2 или d=р-с, где р - полупериметр, с - сторона, противоположная углу треугольника. В нашем случае: О1А=9-7=2, О2А=9-6=3, О3В=9-5=4, следовательно, точки касания вписанной в треугольник АВС окружности совпадают с точками А, В и С касания данных нам окружностей. Радиус вписанной в треугольник окружности равен r=S/p или в нашем случае r=6√6/9=2√6/3. ответ: r=2√6/3.
1. Найдём синус угла между ними:
2. Теперь только осталось найти площадь треугольника по общеизвестной формуле:
Самое забавное тут то, что площадь общего треугольника здесь не определена, т. е. может быть совершенно любой))