См. чертеж. DE = BC про построению. => BCED - параллелограмм, и CE = BD; M - середина AE = AD + BC; => PM = (AD + BC)/2 - AD/2 = BC/2 = FC; => PFCM - параллелограмм, и CM = FP; по построению MN = CM; диагонали четырехугольника ACEN делятся точкой пересечения пополам => это тоже параллелограмм. Площадь трапеции ABCD равна площади треугольника ACE; и та и та равны H*(AD + BC)/2; где H - расстояние от точки C до AD, (в таких случаях говорят, что у треугольника и трапеции общая высота). Площадь треугольника ACE равна площади треугольника ACN - обе равны половине площади параллелограмма ACEN; Треугольник ACN имеет стороны 30, 34 и 16; его площадь находится элементарно и равна 240;
Не буду изображать хранителя знаний :)) ACN - прямоугольный треугольник, поскольку 16, 30, 34 - Пифагорова тройка, кратная (8, 15, 17); Можно было бы и выбрать середину AB - пусть это точка K, и показать, что 1) площадь APK равна 1/4 площади трапеции, достаточно провести среднюю линию, и все видно, 2) APK - (8, 15, 17);
Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.
Так как A внутри BCD, AB=AD, то BAD - тоже равнобедренный треугольник, и у него общее с BCD основание BD. Поставим точку K так, что BK=KD, тогда KC - медиана BCD, KA - медиана BAD. Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC. Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.
DE = BC про построению.
=> BCED - параллелограмм, и CE = BD;
M - середина AE = AD + BC; => PM = (AD + BC)/2 - AD/2 = BC/2 = FC;
=> PFCM - параллелограмм, и CM = FP;
по построению MN = CM; диагонали четырехугольника ACEN делятся точкой пересечения пополам => это тоже параллелограмм.
Площадь трапеции ABCD равна площади треугольника ACE; и та и та равны H*(AD + BC)/2; где H - расстояние от точки C до AD, (в таких случаях говорят, что у треугольника и трапеции общая высота).
Площадь треугольника ACE равна площади треугольника ACN - обе равны половине площади параллелограмма ACEN;
Треугольник ACN имеет стороны 30, 34 и 16; его площадь находится элементарно и равна 240;
Не буду изображать хранителя знаний :)) ACN - прямоугольный треугольник, поскольку 16, 30, 34 - Пифагорова тройка, кратная (8, 15, 17);
Можно было бы и выбрать середину AB - пусть это точка K, и показать, что 1) площадь APK равна 1/4 площади трапеции, достаточно провести среднюю линию, и все видно, 2) APK - (8, 15, 17);