Правильный четырехугольник- это квадрат, квадрат вписан в окружность, значит его диагональ является диаметром описанной окружности Пусть сторона квадрата равна b тогда 2R=b√2 ⇒ R=b√2/2
Радиус описанной около правильного треугольника окружности выражаем через сторону правильного треугольника а.
Найдем высоту правильного треугольника h=a·sin 60°=a√3/2 Высота равностороннего треугольника является одновременно и медианой Медианы в точке пересечения делятся в отношении 2:1, считая от вершины Точка пересечения медиан правильного треугольника является одновременно и радиусом описанной и радиусом вписанной окружности R=(2/3)·H=(2/3)·a·(√3/2)=a√3/3
ПОЛЕЗНО ЗАПОМНИТЬ R=a√3/3
Радиус один и тот же
b√2/2=a√3/3 ⇒ 3b√2=2a√3 a:b=3√2:2√3=√3:√2 ответ. отношение сторон треугольника и четырехугольника равно √3:√2
Если трапеция описана около окружности, то суммы ее противоположных сторон равны. Сумма боковых сторон = 9a+16a+9a+16=50a, значит сумма оснований также = 50a. Радиус вписанной в трапецию окружности = 1/2 h = 12 см. Радиус можно найти по формуле r=S/p, где S - площадь, p - полупериметр. Найдем p, зная суммы противоположных сторон: p=50a+50a/2=50a S = a+b/2 * h, где а и b - основания; Сумма оснований = 50а, значит полусумма = 25а, следовательно S = 25a*24 Вернемся к формуле: 25a*24/50a=12 600a=600, значит а=1 Средняя линия - это полусумма оснований, значит, она равна = 25а=25 (см) ответ: 25 см.
За х возьмем стороны АД=ВС,следовательно ДВ=3-х
Треугольник СДВ-прямоугольный, значит по теореме Пифагора можно составить такое уравнение:
x^2=(3-х)^2+(корень из 3)^2
подставим числовые значения
9-6х+x^2+3=x^2
х=2
АД=2.
Треугольник АДС-прямоугольный,
по теореме Пифагора АС=корень из 7