Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4
АН⊥ВС.
СС₁⊥(АВС), значит АН⊥СС₁.
АН перпендикулярен двум пересекающимся прямым плоскости (ВСС₁), значит АН⊥(ВСС₁).
Проведем КТ║АН.
Тогда КТ⊥(ВСС₁).
Плоскость (С₁КТ) проходит через прямую КТ, перпендикулярную (ВСС₁), значит (С₁КТ)⊥(ВСС₁).
С₁КТ - искомое сечение.
С₁Т - проекция С₁К на плоскость (ВСС₁), значит ∠КС₁Т - угол между прямой С₁К и плоскостью (ВСС₁).
∠КС₁Т - искомый. Обозначим его α.
ΔАВС: АН = АВ√3/2 = 4√3/2 = 2√3 как высота равностороннего треугольника.
КТ = АН/2 = √3 как средняя линия ΔАСН.
ΔСС₁К: по теореме Пифагора
С₁К = √(СС₁² + КС²) = √(6 + 4) = √10
ΔС₁КТ: КТ - перпендикуляр к плоскости (ВСС₁), прямая С₁Т лежит в этой плоскости, значит КТ⊥С₁Т. Треугольник прямоугольный.
sinα = KT/C₁K = √3/√10
cosα = √(1 - sin²α) = √(1 - 3/10) = √(7/10) = √70/10