М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
розасит2006
розасит2006
07.01.2020 06:30 •  Геометрия

Точка a расположена вне квадрата klmn с центром o , причём треугольник kan прямоугольный ( = 90 a ) и =3 ak an . точка b лежит на стороне kn и : 2: 1 kb bn  . а) докажите, что прямая bm параллельна прямой an . б) прямая ao пересекает сторону ml квадрата в точке p. найдите отношение : lp pm .

👇
Ответ:
qwertyspro
qwertyspro
07.01.2020
А) tg∠BMN=BN/MN=(KN/3)/MN=1/3=AN/AK=tg∠AKN, т.е. ∠BMN=∠AKN. Значит ∠BMN+∠MNA=∠BMN+(90+∠KNA)=∠BMN+(90°+(90°-∠AKN))=180°.
т.е. сумма внутр. односторонних углов при прямых BM, AN и секущей MN равна 180°, откуда BM||AN.

б) Четырехугольник KONA - вписанный, т.к. ∠KON=90 и ∠KAN=90.
Значит ∠OAN=∠OKN=45, т.е. AO - биссектриса треугольника KAN, т.е. делит сторону KN в отношении AN/AK=1/3. Значит LP/PM=1/3.
Точка a расположена вне квадрата klmn с центром o , причём треугольник kan прямоугольный ( = 90 a 
4,4(21 оценок)
Ответ:
alex499
alex499
07.01.2020
AK=3AN, KB:BN=2:1.
Пусть NB=х, тогда сторона квадрата равна 3х.
а) ∠NBM=∠BML так как NK║ML и МВ - секущая.
В тр-ке MNB tgB=MN/NB=3x/3=3.
В тр-ке AKN tgN=AK/AN=3AN/AN=3.
При параллельных NK и ML ∠ANK=∠BML, значит BM║AN.
Доказано.

б) АР пересекает сторону KN в точке Н. В тр-ках AKN и KOH на сторону KN опустим высоты АС и ОТ соответственно.
Пусть AN=y, AK=3y.
В прямоугольном тр-ке АKN AN²+AK²=KN²,
y²+9y²=9x²,
y=3x/√10.
Высота АС=AN·AK/KN=(3x/√10)·(9x/√10)/(3x)=9x/10.
В тр-ке ACN NC=AC/tgN=3x/10.
CT=NT-NC=(3x/2)-(3x/10)=6x/5.
Треугольники АСН и ОТН подобны (∠АНС=∠ОНТ и оба прямоугольные).
Коэффициент подобия тр-ков АСН и ОТН: k=АС/ОТ=(9х/10):(3х/2)=3/5.
СН/НТ=3/5.
Пусть СН=3z, НТ=5z.
СТ=CH+HT=3z+5z=8z,
8z=6x/5,
z=3x/20.
СН=9х/20, НТ=3х/4.
NH=NC+CH=(3x/10)+(9x/20)=3x/4.
КН=КТ+НТ=(3х/2)+(3х/4)=9х/4.
NH:KH=(3х/4):(9х/4)=1:3.
Треугольники КОН и МОР равны так как ∠НОК=∠РОМ (как вертикальные), ∠ОКН=∠ОМР (KN║ML и КМ - секущая), МО=ОК.
KN=ML, КН=МР, значит LP:PM=NH:KH=1:3 - это ответ.
4,5(98 оценок)
Открыть все ответы
Ответ:
flox1998
flox1998
07.01.2020
Дано не буду писать. Значит в 1. Угол АВС=180-45-75=60. (45-это угол 90 делит биссектриса и получаем по 45). Теперь ищем угол АСВ через большой треугольник. Он получается 180-90-60=30. Во второй пусть угол у меньшего катета равен 60. тогда напротив угол 30. Пусть гипотенуза будет Х, тогда катет, лежащий против угла в 30 градусов, равен половине гипотенузы и будет Х/2. Уравнение "Х+Х/2=3, Х=2", значит гипотенуза равна 2. В 3 большая сторона лежит напротив большего угла, то есть напротив угла А, а меньшая сторона лежит напротив меньшего угла, то есть напротив угла С. В 4 треугольник ДКЕ прямоугольный, угол ВДК=30, 3 лежит против 30 градусов, значит гипотенуза будет 6. а в большом треугольнике катет 6, лежит против угла 30 и гипотенуза ВЕ=12. КЕ=12-3=9
4,4(97 оценок)
Ответ:
Андрей0126
Андрей0126
07.01.2020
ВС = 16
АВ = 12
<АВС = 90°
ВМ - медиана
cos<ВМС - ?
Решение
В прямоугольном треугольнике ABC медиана равна половине гипотенузы.
1) Найдём по теореме Пифагора гипотенузу АС
АС² = АВ² + ВС²
АС² = 12² + 16² = 144 + 256 = 400
АС = √400 = 20

2) Т.к. ВМ - медиана, то АМ = СМ = 20/2 = 10

3)Для ΔВСМ применим теорему косинусов
ВС² = ВМ² + СМ² - 2* ВМ * СМ * cos<BMC
256 = 100 + 100 - 2 * 10 *10 * cos<BMC
cos<BMC = - 56/200
cos<BMC = - 0.28 знак минус означает, что <ВМС - тупой
ответ: cos<BMC = - 0.28 
4,7(100 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ