см. чертеж, верхний рисунок.
Я не буду тратить время на объяснение простых вещей - постарайтесь обосновать их самостоятельно, это очень просто.
BF перпендикулярно AD (обоснуйте), SO перпендикулярно основанию, а - значит - и BF. Поэтому => BF перпендикулярно плоскости ASD (то есть всем прямым в этой плоскости).
Если в плоскости ASD провести перпендикуляр АК к продолжению SM (М - середина BF), то АК и есть расстояние от А до SBF, поскольку АК перпендикулярно BF и SM, то есть всей плоскости SBF.
см. чертеж, нижний рисунок.
Это - плоскость ASD. В ней AD = 2 (обоснуйте), поэтому треугольник ASD - равносторонний (все стороны равны 2).
Треугольники АМК и SMO подобны (прямоугольные с равными острыми углами), поэтому АК/AM = SO/SM;
AK = x; AM = MO = 1/2;
SM^2 = 3 + (1/2)^2 = 13/4; SM = √13/2;
2*x =2*√3/√13; x = √(3/13);
длина большей стороны = 42 + 14 = 56 см
Найдем длину диагонали по теореме Пифагора:
√(42²+56²) = √4900 = 70
Рассмотрим треугольник, образованный сторонами прямоугольника и диагональю. Биссектриса делит сторону треугольника на отрезки, пропорциональные двум другим сторонам треугольника (свойство биссектрисы)
Обозначим один из отрезков = х, тогда второй отрезок = 70-х
Пропорция:
42 относится к 56 так же как х относится к 70-х
42/56 = х/(70-х)
56х=42(70-х)
56х=2940-42х
98х=2940
х=30 см
Второй отрезок 70-30 = 40 см
ответ: 30 см и 40 см
Второй возможный вариант:
меньшая сторона прямоугольника = 14 см
большая - по прежнему 14+42=56 см
Тогда длина диагонали будет равна √14²+56²=√3332=14√17
А пропорция примет вид:
14/56 = х/(14√17 -х)
Отсюда х = (14√17)/5 - длина меньшего отрезка
Длина большего отрезка = 14√17 - (14√17)/5 = (56√17)/5