Медианы, проведенные к катетам прямоугольного треугольника, равны a и b. Найти гипотенузу треугольника.
Пусть данный треугольник АВС, угол С=90º,
а - медиана АА1 к ВС, b- медиана ВВ1 к АС.
В ∆ АСА1 катет СА1=0,5 ВС ⇒ по т.Пифагора:
а²=АС²+(0,5ВС)²=АС²+0,25 ВС²
В ∆ ВСВ1 катет СВ1=0,5 АС ⇒ по т.Пифагора:
b²=ВС²+(0,5 АС)²=ВС²+0,25 АС²
Сложим два уравнения
а²+b²=1,25 (АС²+ВС²)⇒
АС²+ВС²=(а²+b²):1,25 ⇒
АВ²=АС²+ВС²=(а²+b²):1,25
АВ=√[(а²+b²):1,25]=0,4√[5•(а²+b²)] или 2√[(а²+b²):5], что одно и то же.
1) В основаниях призмы лежат n-угольники. Основания призмы параллельны и равны. Количество вершин призмы равно количеству вершин n-угольников, лежащих в основаниях.
Количество вершин одного основания равно n. Т.к. оснований два и они равны, то количество вершин двух оснований равно 2n. Значит количество вершин в призме равно 2n.
2n это всегда четное число, т.к. оно делится. на 2. Значит число вершин любой призмы четно.
2) В основании призмы лежит n-угольник. Он имеет n сторон, которые являются ребрами призмы. В противоположном основании такой же n-угольник с точно таким же числом сторон.
Кроме этого все вершины одного основания соединены ребрами с соответствующими вершинами другого основания. Поскольку n пар вершин соединены ребрами, то ребер (боковых) тоже n штук.
Всего ребер у призмы n+n+n=3n.
Число 3n кратно 3. Следовательно число ребер любой призмы кратно 3.
4a²+x²=2z²+2y²
4b²+y²=2z²+2x²
x²+y²=z²
Складываем первое ур-е и второе, и применяем третье:
4a²+4b²+z²=4z²+2z²
4(a²+b²)=5z²
Отсюда