Восновании пирамиды лежит треугольник, один угол которого 90°, другой – 30°, а наибольшая сторона равна 34 см. боковые ребра пирамиды образуют с плоскостью основания угол 60°. найдите объем пирамиды.
ЕАВС - пирамида, ∠АСВ=90°, ∠САВ=30°, АВ=34 см, ∠ЕАО=∠ЕВО=∠ЕСО=60°. Катет ВС лежит напротив угла в 30°, значит он вдвое меньше гипотенузы. ВС=АВ/2=17. АС=√(АВ²-ВС²)=17√3 см. Так как боковые рёбра одинаково наклонены к плоскости основания, основание высоты пирамиды лежит в центре описанной окружности, который в прямоугольном тр-ке лежит посередине гипотенузы. АО=ВО=СО=АВ/2=17 см. В тр-ке ЕАО ЕО=АО·tg60=17√3 см. Объём пирамиды: V=SH/3, S=AC·BC/2=17·17√3/2=17²√3/2. V=17²√3·17√3/6=2456.5 см³ - это ответ.
Градусная мера прямого угла равна 90 градусов. Прямой угол АОВ разделен углом ОС на два угла: угол АОС и угол СОВ, т.е. АОВ=АОС+СОВ. Один из получившихся углов (пусть это будет АОС) на 12 градусов больше другого, т.е. АОС=СОВ+12 градусов. Соответственно, АОВ=СОВ+СОВ+12 градусов. По условию, АОВ=90 градусов. 90=СОВ+СОВ+12 90=2*СОВ+12 2*СОВ=90-12 2*СОВ=78 СОВ=78:2 СОВ=39 градусов - градусная мера меньшего из получившихся углов. Тогда АОС=СОВ+12=39+12=51 градус - градусная мера большего из получившихся углов. ответ: 39 градусов; 51 градус.
Основное тригонометрическое тождество: sin²α + cos²α = 1, откуда sinα = √(1 - cos²α) или sinα = - √(1 - cos²α)
Знак синуса зависит от координатной четверти, в которой расположен угол. Но в данной задаче, вероятно, речь идет об остром угле прямоугольного треугольника, поэтому будем рассматривать синус угла только положительный.
Катет ВС лежит напротив угла в 30°, значит он вдвое меньше гипотенузы. ВС=АВ/2=17.
АС=√(АВ²-ВС²)=17√3 см.
Так как боковые рёбра одинаково наклонены к плоскости основания, основание высоты пирамиды лежит в центре описанной окружности, который в прямоугольном тр-ке лежит посередине гипотенузы.
АО=ВО=СО=АВ/2=17 см.
В тр-ке ЕАО ЕО=АО·tg60=17√3 см.
Объём пирамиды: V=SH/3, S=AC·BC/2=17·17√3/2=17²√3/2.
V=17²√3·17√3/6=2456.5 см³ - это ответ.