Так как в условии не указано, к какой из сторон проведена высота, то возможны ТРИ случая ( так как в треугольнике три стороны.
Площадь треугольника равна S = (1/2)*a*h, где h - высота треугольника, а - сторона, к которой проведена высота.
1) S = (1/2)*85*36 = 1530 см².
2) S = (1/2)*60*36 = 1080 см².
3) Найдем третью сторону треугольника из двух прямоугольных треугольников, на которые делит данный треугольник высота, проведенная к третьей стороне.
По Пифагору одна часть третьей стороны равна √(85²-36²) = 77 см.
Вторая часть третьей стороны равна √(60²-36²) \= 48 см.
Третья сторона равна 77+48 = 125 см. Тогда
S = (1/2)*125*36 = 2250 см².
ответ: S1 = 1530см², S2 = 1080см², S3 = 2250см².
Объем конуса находят по формуле:
V = ⅓ * π * R ² * h, где R - радиус основания, h - высота конуса.
Так как высота конуса равна радиусу шара формула примет вид:
V = ⅓ * π * R ³.
Объем шара: V = (4 * π * R ³) / 3. V = 24 ( по условию )
24 * 3 = 4 * π * R ³
72 = 4 * π * R ³
π * R ³ = 18.
Подставим значение π * R ³ в формулу объема конуса:
V = ⅓ * 18 = 6.