угол A равен углу А1, АВ равно А1В1, АС равно А1С1. Докажем, что треугольники равны. Наложим треугольник ABC на треугольник A1B1C1 так, чтобы угол A совместился с углом A1. Так как АВ=А1В1, а АС=А1С1, то B совпадёт с В1, а C совпадёт с С1.Значит, треугольник А1В1С1 совпадает с треугольником АВС, а следовательно, равен треугольнику АВС. 2) Луч С1С совпадает с одной из сторон этого угла. A лежит на CC1. AC=A1C1, BC=B1C1, ∆C1BC – равнобедренный, ∠ACB=∠A1C1B1.
3) Луч C1C проходит вне угла А1С1В1. AC=A1C1, BC=B1C1, значит, ∠1 = ∠2, ∠1+∠3 = ∠2+∠4, ∠ACB=∠A1C1B1. Итак, AC=A1C1, BC=B1C1, ∠C=∠C1. Следовательно, треугольники ABC и A1B1C1 равны по первому признаку равенства треугольников.
R=√(6²+8²)=10.
Объём шара: V=4πR³/3=4π·10³/3=4000π/3 (ед³) - ответ.