В правильном треугольнике длины медианы, высоты, биссектрисы равны.
Выразим длину стороны правильного треугольника через радиус описанной окружности:
По теореме о вписанном угле окружности: угол между радиусами стягивающимиодну из сторон треугольника равен 120 градусам.
По теореме косинусов найдем сторону треугольника:
a^2 = 2r^2-2r^2*cos(120) = 2r^2(1+1/2) = 3r^2
a = r*3^0.5
Найдем медиану, помножив сторону треугольника на sin(60):
m = a*sin(60) = a*3^(0.5)/2 = r*3/2 = r*1.5
m = 10*1.5 = 15 - длина медианы.
Медианы треугольника пересекаются в одной точке. Эта точка делит каждую медиану в отношении 2:1 (считая от вершины).
Медианы в правильном треугольнике равны.
R =10см - 2 части - отрезок от точки пересечения медиан до вершины
Вся медиана - 15см
ответ: 15 см
Следовательно, малая диагональ также равна 8.
Она является катетом-основанием прямоугольного треугольника, вторым катетом которого является высота призмы, а гипотенузой- ее меньшая диагональ.
У прямоугольного треугольника с углом 45° катеты равны, значит, высота призмы также равна 8.
Объем призмы равен произведению площади основания на высоту:
V=S·h=(8²·sin60°)·8=64·(√3/2)·8=256·√3