М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ImHappy102
ImHappy102
04.05.2022 16:29 •  Геометрия

Площадь участка в форме параллелограмма с острым углом 30° равна 8. какое наименьшее значение принимает его периметр?

👇
Ответ:
devil66669
devil66669
04.05.2022
Площадь параллелограмма S=a·b·sin30°
8=a·b·sin30°=a·b·1/2
a·b=16     b=16/a
Периметр равен 2·(a+b)=2·(a+16/a)=2a+32/a
Экстремума функция достигает в точке, где ее производная равна нулю
(2a+32/a)'=2-32/a²=0
2=32/a²     a²=16     a=4 (вариант a=-4 не имеет смысла)
Тогда, b=16/a=16/4=4
и минимальный периметр P=2·(a+b)=2·(4+4)=16
4,8(35 оценок)
Открыть все ответы
Ответ:
abroe
abroe
04.05.2022

1. д) через любые три точки проходит плоскость, и притом только одна. (аксиома)

      2.д) бесконечно много ( т.е. имеют общую прямую, на которой лежат все общие точки этих плоскостей) или ни одной ( если они параллельны).

      3. в) Три  данные точки лежат на одной прямой - они принадлежат ей. Через прямую и точку D, не лежащую на этой прямой, можно провести плоскость, притом только одну. ответ:1; 

      4. в) определяют в любом случае; Через три точки, не лежащие на одной прямой, можно провести плоскость, причём  только одну. 

      5. б) через прямую и не лежащую на ней точку проходит плоскость, и притом только одна;

 

4,6(89 оценок)
Ответ:
Gdyfyttyffhfry
Gdyfyttyffhfry
04.05.2022

Рисунок к вопросу не был приложен, поэтому возможно пирамида выглядит по другому, но построения нужной точки остаётся правильным.

B,O∈(ABC); BO⊂(ABC); AC⊂(ABC). Пусть BO∩AC=P. *по рисунку O - лежит в треугольнике, поэтому прямые BO и AC не могут быть параллельными, а раз они лежат в одной плоскости, то они пересекаются.

O∈BP⊂(SBP) ⇒ O∈(SBP). O∈l; l║SB; SB⊂(SBP) из всего этого следует, что l⊂(SBP). SP⊂(SBP)

Ну и желательно оговорить почему прямые l и SP не параллельны. l⊥(ABC), BP⊂(ABC) ⇒ l⊥BP. Если l║SP, то SP⊥BP поскольку P∈BP. Получается, что из вершины S проведены две не совпадающие высоты к одной плоскости (ABC), что не возможно. Как итог l не параллельно SP, а раз они лежат в одной плоскости (SBP), то они пересекаются.

Пусть l∩SP=T. T - искомая точка, поскольку T∈SP⊂(SAC)

ответ: l∩(SAC)=T.

Это было доказательство того, что построение верное.


SABC — треугольная пирамида, у которой боковое ребро SB перпендикулярно плоскости ABC. Прямая l прох
4,6(36 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ